Research Interests


  • Areas

    Machine Learning, Optimization, Human-Centered Design
  • Topics

    Algorithmic Fairness, Interpretability, Safety, Personalization
  • Applications

    Medicine, Consumer Finance, Criminal Justice, Governance

Recent Papers


Avni Kothari, Bogdan Kulynych, Lily Weng, Berk Ustun

ICLR
International Conference on Learning Representations, 2024

Hailey Joren, Charles T Marx, Berk Ustun

ICLR
International Conference on Learning Representations, 2024

Talia Gillis, Vitaly Mersault, Berk Ustun

FAccT
ACM Conference on Fairness, Accountability, and Transparency, 2024

Hailey Joren, Chirag Nagpal, Katherine Heller, Berk Ustun

NeurIPS
Neural Information Processing Systems, 2023

Vinith M. Suriyakumar, Marzyeh Ghassemi, Berk Ustun

ICML
International Conference on Machine Learning, 2023

Jamelle Watson-Daniels, David Parkes, Berk Ustun

AAAI
Association for Advancement in Artificial Intelligence, 2023

Eric Yamga, Sreekar Mantena, Darin Rosen, Emily Bucholz, Robert Yeh, Leo Celi, Berk Ustun, Neel Butala

Journal of the American Heart Association, 2023

Machine Learning Methods


Jayanth Yetukuri, Ian Hardy, Yevgeniy Vorobeychik, Berk Ustun, Yang Liu

AAAI
Association for the Advancement of Artificial Intelligence, 2024

Jennifer Chien, Margaret Roberts, Berk Ustun

EAAMO
ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization, 2023

Lucas Monteiro Paes, Carol Long, Berk Ustun, Flavio Calmon

NeurIPS
Neural Information Processing Systems, 2022

Lucas Monteiro Paes, Carol Long, Berk Ustun, Flavio Calmon

NeurIPS
Neural Information Processing Systems, 2022

Sejoon Oh, Berk Ustun, Julian McAuley, Srijan Kumar

CIKM
Conference on Information and Knowledge Management, 2022

Haoran Zhang, Quaid Morris, Berk Ustun, Marzyeh Ghassemi

NeurIPS
Neural Information Processing Systems, 2020

Charles Marx, Flavio du Pin Calmon, Berk Ustun

ICML
International Conference on Machine Learning, 2020

Berk Ustun, Alexander Spangher, Yang Liu

FAT*
ACM Conference on Fairness, Accountability and Transparency, 2019

Berk Ustun, Yang Liu, David Parkes

ICML
International Conference on Machine Learning, 2019

Hao Wang, Berk Ustun, Flavio du Pin Calmon

ICML
International Conference on Machine Learning, 2019

Hao Wang, Berk Ustun, Flavio du Pin Calmon

ISIT
IEEE International Symposium on Information Theory, 2018

Berk Ustun, Cynthia Rudin

KDD
Knowledge Discovery and Data Mining, 2017

Berk Ustun, Cynthia Rudin

MLJ
Machine Learning, 2015

Berk Ustun, Stefano Tracà, Cynthia Rudin

AAAI Late Breaking Track, 2013

Panos Parpas, Berk Ustun, Mort Webster, Quang Kha Tran

INFORMS Journal of Computing, 2015

Machine Learning Applications


Amanda Morrison, Berk Ustun, Arielle Horenstein, Simona Kaplan, Irismar Reis de Oliveira, Sedat Batmaz, James Gross, Ekaterina Sadikova, Curt Hemanny, Pedro Pires, Philippe Goldin, Ronald Kessler, Richard G. Heimberg

Journal of Anxiety Disorders, 2022

Kelly Zuromski, Berk Ustun, Irving Hwang, Terence Keane, Brian Marx, Murray Stein, Robert Ursano, Ronald Kessler

Depression and Anxiety, 2019

Berk Ustun, Lenard Adler, Cynthia Rudin, Stephen Faraone, Thomas Spencer, Patricia Berglund, Michael Gruber, Ronald Kessler

JAMA Psychiatry, 2017

Aaron Struck, Berk Ustun, Andres Rodriguez Ruiz, Jong Woo Lee, Suzette LaRoche, Lawrence J. Hirsch, Emily J. Gilmore, Jan Vlachy,
Hiba Arif Haider, Cynthia Rudin, M. Brandon Westover

JAMA Neurology, 2017

Jiaming Zeng, Berk Ustun, Cynthia Rudin

Journal of the Royal Statistical Society: Series A, 2016

Berk Ustun, M. Brandon Westover, Cynthia Rudin, Matt Bianchi

Journal of Clinical Sleep Medicine, 2015

Theses


Berk Ustun

PhD thesis. Massachusetts Institute of Technology, 2017

Berk Ustun

Master’s thesis. Massachusetts Institute of Technology, 2012